Monday, November 06, 2006

Link to: original blogpost - comments

Categories : Evolution, Brain

Editor :

published: dimanche 5 novembre 2006 16:06:49

The stickiness of human neurons may have been a key factor in why the human brain evolved beyond the brains of our primate relatives. In a study comparing the genomes of humans, chimpanzees, mice and other vertebrates, researchers at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and Joint Genome Institute (JGI) found a strikingly high degree of genetic differences in DNA sequences that appear to regulate genes involved in nerve cell adhesion molecules. Cell adhesion controls many aspects of brain development including growth and structure, and enables neurons to connect with other neurons and supportive proteins. Differences in the molecular connections of human neurons compared to the neurons of chimps, mice and other animals, could help explain why the human brain is capable of far more complex cognitive functions.

In a paper published in the Nov 3, 2006 issue of the journal Science, a team of researchers led by Edward Rubin, MD, director of both JGI and Berkeley Lab’s Genomics Division, report on a comparative genomics study of conserved noncoding sequences (CNSs) - sequences of DNA shared by many different organisms that do not code for proteins but play an important role in regulating gene expression. In their Science paper, the researchers identified 992 CNSs whose sequences were specifically modified in humans and enriched near genes involved in neuronal cell adhesion.

Said Noonan, “While the accelerated chimpanzee CNSs were also significantly enriched near neuronal cell adhesion genes, there was no overlap between them and human DNA sequences, which suggests that the accelerated evolution of adhesion cell function occurred independently in humans and chimpanzees. We failed to detect any CNS enrichment near cell adhesion genes in mice.”

, ,

0 Comments:

Post a Comment

Links to this post:

Create a Link

<< Home